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We present a novel hybrid computational method to simulate accurately dendritic
solidification in the low undercooling limit where the dendrite tip radius is one or
more orders of magnitude smaller than the characteristic spatial scale of variation
of the surrounding thermal or solutal diffusion field. The first key feature of this
method is an efficient multiscale diffusion Monte Carlo (DMC) algorithm which
allows off-lattice random walkers to take longer and concomitantly rarer steps with
increasing distance away from the solid–liquid interface. As a result, the compu-
tational cost of evolving the large-scale diffusion field becomes insignificant when
compared to that of calculating the interface evolution. The second key feature is
that random walks are only permitted outside of a thin liquid layer surrounding the
interface. Inside this layer and in the solid, the diffusion equation is solved using a
standard finite difference algorithm that is interfaced with the DMC algorithm using
the local conservation law for the diffusing quantity. Here we combine this algorithm
with a previously developed phase-field formulation of the interface dynamics and
demonstrate that it can accurately simulate three-dimensional dendritic growth in
a previously unreachable range of low undercoolings that is of direct experimental
relevance. c© 2000 Academic Press

Key Words:dendritic growth; solidification; phase transformations; moving bound-
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1. INTRODUCTION

Diffusion-limited pattern formation, which leads to the spontaneous emergence of com-
plex branched structures, occurs in numerous contexts. A few examples include dendritic
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solidification [1], electrochemical deposition [2] and corrosion, and the growth of bacterial
colonies [3]. Two distinct length scales are typically involved in this class of problems:
one that characterizes the pattern itself, such as the thickness of a branch, and one that
characterizes the diffusion field associated with the transport of heat or matter. In many
cases, these two scales are vastly different. For example, in solidification, the decay length
of the thermal or solutal field ahead of a growing dendrite (in a pure or alloy melt) can be
one to three orders of magnitude larger than the tip radius of one of its primary branches.
Nontrivial pattern formation dynamics can be expected to occur on all intermediate scales.
This poses a serious challenge for numerical simulations since a precise integration of the
equations of motion on the pattern scale requires a good resolution of the interfacial region,
and such a resolution is completely inefficient (i.e., much too fine) to treat the large-scale
diffusion field. Therefore, to retain this precision on the small scale and, at the same time,
simulate the pattern evolution on sufficiently large length and time scales, it is necessary to
use some form of multiscale algorithm.

Multigrid and finite element methods with nonuniform meshing represent one possible
solution for this type of problem. Their application, however, in the context of growth
simulations faces the additional difficulty of a moving interface, which implies that the
structure of the simulation grid has to be dynamically adapted. For the classic problem
of dendritic crystal growth, several multigrid [4] or adaptive meshing algorithms [5] have
been proposed in recent years. The most precise to date is the method of Provataset al.,
which uses the phase-field model on a regular grid on the scale of the dendrite, whereas the
diffusion field is integrated on an adaptive mesh using finite element techniques [6]. While
this method appears to be promising, it has yet to be implemented in three dimensions where
the difficulty of adaptive meshing becomes significantly enhanced.

We present in this paper an alternative solution to this computational challenge and we
illustrate its application in the context of the dendritic crystallization of a pure substance
from its undercooled melt, even though this algorithm can be applied to any diffusion-
limited growth problem for which an explicit solver of the interface dynamics is available.
The idea is to use a hybrid approach. The interface dynamics is treated using deterministic
equations of motion, in particular those of the phase-field model for the dendritic growth
problem considered here. In contrast, the large-scale diffusion field is represented by an en-
semble of off-lattice random walkers and is evolved using a diffusion Monte Carlo (DMC)
algorithm. The two solutions are connected at some distance from the moving interface.
The key point for rendering our method efficient is that we use random walkers which
dynamically adapt the average length of their random steps. Far from the interface, the
walkers can make large jumps and hence be updated only rarely without affecting the qual-
ity of the solution near the growing interface. In some sense, our method can be seen as an
“adaptive grid algorithm without a grid.” The DMC algorithm and the connection between
deterministic and stochastic parts are rather simple and straightforward to implement in
both two and three dimensions, both on single-processor and parallel architectures. We
demonstrate in this paper that our method is precise, robust, and reliable and hence con-
stitutes a powerful alternative to state of the art adaptive meshing techniques. Technically,
the algorithm bears many similarities to quantum Monte Carlo methods (see for example
[7]). It is therefore remarkable that the gap between mesoscopic and macroscopic length
scales can be bridged using a method borrowed from microscopic physics in an interfa-
cial pattern formation context, which was nota priori obvious to us at the start of this
investigation.
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Our algorithm builds on ideas of earlier random walk algorithms for simulating pattern
formation during viscous fingering [8, 9] and solidification [10–13] but introduces two
essential new features. First, random walks with variable step size have been used previously
in simulations of large-scale diffusion-limited aggregation [14], but only one walker at a
time was simulated, and hence the time variable did not explicitly appear in the treatment
of the walkers. In the present diffusive case, the memory of the past history, stored in
the diffusion field, is essential to the problem. Our DMC algorithm works with a whole
ensemble of walkers in “physical” time and hence constitutes a true multiscale solver for
the full diffusion problem. Second, the algorithms mentioned above use a lattice both to
evolve the walkers and to represent the position of the interface by the bonds between
occupied (solid) and empty (liquid) sites. Walkers are created or absorbed directly at this
interface. The discretization of space and the stochastic creation and absorption of walkers
make it difficult to control accurately the interfacial anisotropy and the noise that both
play a crucial role in dendritic evolution [11, 15]. Consequently, the algorithms aimed at
describing dendritic growth [10, 11, 13], while correctly reproducing all the qualitative
features of the growth process, are unable to yield quantitative results that can be tested
against experiments. We solve both problems by creating and absorbing walkers not at
the solid–liquid interface, but at a “conversion boundary” at some fixed distance from the
interface. This means that the stochastic representation of the diffusion and the motion of the
interface can be treated separately, which allows us to evolve the interface accurately by
the phase-field method using a finite difference representation of controlled precision. At
the same time, the stochastic noise created by the DMC algorithm is rapidly damped by the
deterministic diffusion in the “buffer layer” between the conversion boundary and the solid–
liquid interface, and hence the amplitude of the fluctuationsat the solid–liquid interface
can be reduced to a prescribed level without much cost in computation time by increasing
the thickness of the buffer layer. This is an important issue for simulations of dendritic
growth, since the amplification of microscopic fluctuations of the interface is believed to be
the main cause for the formation of secondary dendrite branches [16]. Hence, thephysical
noise that arises from the fundamental thermodynamical fluctuations of the diffusion field
is essential to the pattern formation process. In contrast,numericalnoise can lead to the
formation of spurious sidebranches in simulations. We demonstrate here that the numerical
noise of the present hybrid algorithm can be reduced to a level that does not affect the
pattern evolution, such that the physical noise can be added in a controlled manner in future
simulations.

Another benefit of the buffer layer is that it makes the algorithm very versatile. Away from
the interface, only the standard diffusion equation has to be solved. Therefore, the DMC part
of the algorithm and the conversion process between deterministic and stochastic solutions
are completely independent from the method used for simulating the interface dynamics,
and they can easily be carried over to other free-boundary problems.

The purpose of the present paper is to describe the algorithm in detail and to demonstrate
its reliability and precision by benchmark simulations. Some results concerning three-
dimensional crystal growth at low undercoolings have already been presented elsewhere
[17, 18], and hence we will focus here on the computational aspects of the problem. Section 2
contains a brief introduction to dendritic solidification and the basic equations of motion
and describes the phase-field method. In Section 3, the DMC algorithm and its interfacing
with the phase-field equations are described in detail. In Section 4, we present results of
benchmark simulations, assess the efficiency of the code and the magnitude of numerical
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noise, and present simulations of three-dimensional dendritic growth. Section 5 contains a
conclusion and the outline of future work.

2. DENDRITIC GROWTH AND THE PHASE-FIELD METHOD

When a crystal grows from an undercooled melt, it develops into an intricate branched
structure, called a dendrite. This phenomenon has been of central importance to the under-
standing of spontaneous pattern formation during phase transformations and the emergence
of branched structures [19–21]. In addition, it is of considerable practical interest, because
dendrites form during the solidification of many commercially important alloys and influ-
ence the mechanical properties of the finished material.

We will focus on the dendritic solidification of a pure substance from its homogeneously
undercooled melt, starting from a single supercritical nucleus [22–26]. This situation is
well described by the symmetric model of solidification, which assumes that the diffusivity
and thermophysical quantities such as the specific heat and the density are equal for the
solid and the liquid phases. During the growth of the crystal, the latent heat of melting is
released, and in the absence of convection, the growth becomes limited by the diffusion of
heat away from the growing dendrite. The state of the system at any time is described by
the temperature fieldT(x, t) and the shape0(t) of the boundary between solid and liquid.
It is customary to define a dimensionless temperature field

u(x, t) = T(x, t)− Tm

L/cp
, (1)

whereL andcp are the latent heat of melting and the specific heat, respectively, andTm is
the melting temperature. In terms of this field, the equations of motion of the symmetric
model are

∂t u = D∇2u, (2)

vn = Dn̂ · (∇u|S−∇u|L) , (3)

u0 = −d0

d−1∑
i=1

[
a(n̂)+ ∂

2a(n̂)

∂θ2
i

]
1

Ri
− β(n̂)vn, (4)

whereD is the thermal diffusivity,vn is the normal velocity of the interface, andn̂ is the unit
normal vector of the surface0 pointing toward the liquid. The diffusion equation, Eq. (2),
is valid everywhere (in the liquid and in the solid) except on the surface0. The Stefan
condition, Eq. (3), valid on0(t), expresses the conservation of enthalpy at the moving
phase boundary. Here,∇u|S and∇u|L denote the limits of the temperature gradient when
0 is approached from the solid side and the liquid side, respectively, and the equation
states that the local heat flux at the interface must be equal to the latent heat generated or
consumed during the phase transformation;vn is positive if the solid grows (i.e., freezes). The
dimensionless temperature at the interfaceu0 is given by the generalized Gibbs–Thomson
condition Eq. (4). The first term on the right-hand side (RHS) is the anisotropic form of
the local equilibrium condition (Gibbs–Thomson condition) which relates the temperature
to the curvature of the interface and the anisotropic surface tensionγ (n̂) = γ0a(n̂). For a
crystal with cubic symmetry in three dimensions, the anisotropy functiona(n̂) is usually
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written as

a(n̂) = (1− 3ε4)

[
1+ 4ε4

1− 3ε4

(
n4

x + n4
y + n4

z

)]
, (5)

whereε4 is the anisotropy parameter. Note that in two dimensions (d = 2), this expression
reduces to

a(θ) = 1+ ε4 cos(4θ), (6)

whereθ is the angle between the normal and one of the axes of symmetry. On the RHS of
Eq. (4),

d0 = γ0Tmcp

L2
(7)

is the capillary length,d is the spatial dimension,θi are the angles between the normaln̂ and
the two local principal directions on0, andRi are the principal radii of curvature. Finally,
the second term on the RHS of Eq. (4) describes the shift of the interface temperature
due to molecular attachment kinetics, andβ(n̂) is the orientation-dependent linear kinetic
coefficient. Kinetic effects are believed to be small for the range of solidification speeds
of interest here. We will therefore focus on the case where the interface kinetics vanish
(β(n̂) ≡ 0), which corresponds to local equilibrium at the interface. In this case, the physical
length and time scales are set by the capillary length and the diffusivity, and the control
parameters of the problem are the anisotropyε4 and the dimensionless undercooling

1 = Tm− T0

L/cp
, (8)

whereT0 is the initial temperature,T(x, 0) = T0, which provides the thermodynamic driving
force for solidification. We assume that the dendrite grows into an infinite volume of liquid,
and henceu(x, t)→−1 as|x| → ∞∀ t . Typical experimental values for1 range from
0.001 to 0.1. The length scales involved in the problem are (i) the capillary lengthd0, (ii) a
typical scale of the pattern such as the radius of curvature at a tipρ, and (iii) the length scale
of the diffusion fieldl D. To fix the ideas, let us consider the measurements of Rubinstein and
Glicksman on pivalic acid (PVA) [23]. For a dimensionless undercooling of1 = 0.075,
ρ = 8.5µm, and the speed of the tips isv = 390µm/s, which gives a diffusion length
lD = 2D/v = 0.38 mm, whereasd0 = 3.8 nm. The multiscale character of this situation is
obvious:lD andd0 differ by five orders of magnitude, andlD is forty times larger thanρ.
These ratios become even larger for lower undercoolings. We emphasize that in the present
paper we do not attempt to actually simulate the cited experiments, since debate continues
on several issues regarding PVA, such as the anisotropy strength and the importance of
interface kinetics as well as the influence of convection in terrestrial experiments. The
numbers serve here to illustrate the minimum performance requirements for an algorithm
that aims to achieve a truly quantitative modeling.

The above equations constitute a notoriously difficult free-boundary problem. To simplify
the task, theoretical and numerical efforts first concentrated on the treatment of a single
needle crystal growing at constant velocity. This situation can be treated by boundary integral
methods [20], which are exact in two dimensions (2-d) but have remained approximate
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in three dimensions (3-d). More recently, time-dependent methods have been developed
to describe the full growth dynamics [27–29]. Of those, the phase-field method2 seems
presently the most compact and precise approach. We use a recent efficient formulation
of this method, which has been benchmarked against boundary integral calculations [29].
An “order parameter,” or phase-fieldψ(x, t), is introduced, which is an indicator field
distinguishing the solid (ψ = 1) and the liquid (ψ = −1) phase. The two-phase system is
described by a free energy functional of Ginzburg–Landau type,

F =
∫

dV

[
1

2
W2(n̂)|∇ψ |2+ f (ψ, u)

]
, (9)

whereW(n̂) is the orientation-dependent interface thickness, i.e., the spatial scale on which
the phase-field varies smoothly between its equilibrium valuesψ = ±1, and f (ψ, u) is the
free energy density. The equations of motion are

τ(n̂)∂tψ = − δF
δψ(x, t)

, (10)

whereδF/δψ denotes the functional derivative, and

∂t u = D∇2u+ 1

2
∂tψ. (11)

The phase-field relaxes to its local minimum free energy configuration, which depends on the
local temperature field, with an orientation-dependent relaxation timeτ(n̂). The diffusion
equation contains a source term to account for the latent heat released or consumed during
the phase transformation. For a suitable choice of the functionsf (ψ, u), W(n̂), andτ(n̂),
these equations reduce precisely to the free boundary problem given by Eqs. (2) to (4) in the
limit where the interface thickness is small compared to the radii of curvature [29]. A brief
description of the model used for our simulations and its relation to the macroscopic free
boundary problem is given in the Appendix. The key point is that the phase-field equations
of motion are partial differential equations which can be integrated on a regular grid on
the scale of the dendrite, without explicit knowledge of where the solid–liquid interface is
located. The phase field rapidly decays to its equilibrium valuesψ = ±1 away from the
interface. Therefore, well within the bulk phases, Eq. (10) becomes trivial and Eq. (11)
reduces to the ordinary diffusion equation.

3. DIFFUSION MONTE CARLO ALGORITHM

3.1. Outline

Our goal is to combine the precision of the phase-field method and the efficiency of a
DMC treatment for the diffusion field. This is achieved by dividing the simulation domain
into an “inner” and an “outer” region as shown in Fig. 1. In the inner region, consisting
of the growing structure and a thin “buffer layer” of liquid, we integrate the phase-field
equations described above. In the outer region, the diffusion field is represented by an

2 For a brief historic overview and a comprehensive list of references concerning the phase-field method, see
Ref. [29].
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FIG. 1. Simulation of two-dimensional dendritic growth for a dimensionless undercooling1 = 0.1 and
a surface tension anisotropyε4 = 0.025. The solid line is the solid–liquid interface0, the dashed line is the
conversion boundary0′ between the inner (deterministic) and outer (stochastic) domains, and the dots show the
positions of random walkers (only one walker out of 50 is shown for clarity).

ensemble of random walkers. Walkers are created and absorbed at the boundary between
inner and outer domains at a rate which is proportional to the local diffusion flux. The value
of the diffusion field in the outer domain is related to the local density of walkers, and the
boundary conditions for the integration in the inner region are obtained by averaging this
density over coarse-grained boxes close to the boundary. We will now describe in detail
the DMC algorithm for the evolution of the random walkers and the connection of the two
solutions.

Let us start by recalling some well-known facts about random walkers. Consider first
a single point particle performing a Brownian motion in continuous space and time. The
conditional probabilityP(x′, t ′ | x, t) of finding the particle at positionx′ at timet ′, given
that it started from positionx at timet , is identical to the diffusion kernel,

P(x′, t ′ | x, t) = 1

[4πD(t ′ − t)]d/2
exp

[−|x′ − x|2
4D(t ′ − t)

]
, (12)

whereD is the diffusion coefficient andd is the spatial dimension. This kernel satisfies the
well-known convolution relation

P(x′′, t ′′ | x, t) =
∫

P(x′′, t ′′ | x′, t ′)P(x′, t ′ | x, t) dx′ ∀ t < t ′ < t ′′. (13)

Therefore, a realization of a random walk, i.e., the position of a walker as a function
of time, represented by a time-dependent vector of real numbersx(t), can be obtained
on a computer by successive steps. The position of the walker is updated following the
scheme

x(t + τ) = x(t)+ `ξ, (14)

where the components of the random vectorξ are independent Gaussian random variables
of unit variance. The time incrementτ (not to be confused with the phase-field relaxation
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time τ(n̂) defined in the preceding section) and the step size` must satisfy the relation

`2

τ
= 2D. (15)

Since time is continuous and Eq. (13) is not restricted tot ′′ − t ′ = t ′ − t , successive steps
may have different time increments (and concomitantly use different step lengths) if
Eq. (15) is satisfied for each update.

The basic idea of diffusion Monte Carlo simulations is to sample many realizations
of diffusion paths. The density of random walkers then satisfies a stochastic differential
equation which converges to the deterministic diffusion equation in the limit of an infinite
number of walkers. A density of walkers can be defined by a suitable coarse-graining
procedure on a scaleLcg, i.e., by dividing space into cells of volumeLd

cg and counting the
number of walkers within each cell. If the coarse-graining length is chosen larger than the
average step length̀, this density evolves smoothly on the scale ofLcg over times of order
L2

cg/D, the time for one walker to diffuse through a coarse cell.
From the above considerations, it is clear that the characteristic length and time scales

that can be resolved by a stochastic DMC algorithm are set by the step size` and the time
incrementτ , respectively. The key point is that for the present application a high spatial
and temporal resolution is neededonly close to the interface, whereas far from the dendrite,
the coarse-graining length and hence the step size can become much larger than the fine
features of the growing crystal. In practice, we choose the step size to be approximately
proportional to the distancedcb of the walker from the conversion boundary between the
inner (deterministic) and outer (stochastic) regions, i.e.,

` ≈ cdcb (16)

with a constantc¿ 1. According to Eq. (15), the time increment between updates grows
as the square of the step size, and hence the walkers far from the dendrite have to be
updated only rarely. We use dynamical lists to efficiently handle the updating process, as
will be described in more detail in Section 3.2. For low undercoolings, where the scale
of the diffusion field is much larger than the dendrite itself and most of the walkers need
only be updated sporadically, we obtain enormous savings of computational time over a
straightforward integration of the diffusion equation.

Let us now discuss how the inner and outer regions are interfaced. Two essential goals
have to be accomplished. First, we have to supply a boundary condition at the conversion
boundary for the integration of the deterministic equations in the inner region, and second
we need to create and absorb walkers at a rate which is proportional to the local heat flux
across this boundary.

The phase-field equations are integrated in the inner region on a regular cubic grid,
henceforth called the “fine grid,” with spacing1x. Each node on this grid contains the local
values of the phase fieldψ and the temperature fieldu. We superimpose on this grid another,
coarser grid, of mesh sizeLcg = n1x, such that the links of the coarse grid intersect the links
of the fine grid as shown in Fig. 2. The first purpose of this grid is to define the geometries of
the two simulation regions and of the conversion boundary. We describe the “state” of each
coarse cell by an integer status variableSt

αβγ . Here and in the following, Greek indices (α,β,
γ ) label thecellsof the coarse grid along thex-, y-, andz-directions, whereas latin indices
(i , j , k) label thenodesof the fine grid. All cells which contain at least one node of the
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FIG. 2. Sketch of a small part of the conversion boundary in two dimension forn = 4. Each cell of the coarse
grid (thick lines) contains 16 points of the fine grid (thin lines). The fine grid is shown only in the inner region for
clarity. The shaded cells are conversion cells, and walkers are represented by black dots. The boundary0′ between
inner and outer regions is indicated by a dashed line.

fine grid whereψ > 0 are assigned the status “solid” (S= −2). All cells with a center-to-
center distance to the nearest solid cell smaller than a prescribed lengthLb are “buffer cells”
(S= −1), whereas all other cells belong to the outer region. Cells of the outer region which
have at least one nearest neighbor with buffer status are calledconversion cells(S= 0)
and play the central role in interfacing the two solutions. The dividing surface0′ between
inner and outer regions is the union of all the links (or plaquettes in three dimensions) of the
coarse grid which separate conversion from buffer cells (see Fig. 2). Evidently, as the crystal
grows, the geometry of the two regions changes, which means that the status variables must
be periodically updated. Details on this procedure are given in Section 3.3.

We always chooseLb sufficiently large to ensure that the phase field is already close to its
liquid equilibrium value,ψ ≈ −1, at the conversion boundary. Hence we can setψ = −1
in the entire outer region and treat only the standard diffusion equation there. In the initial
state, the entire system is undercooled tou = −1, and no walkers are present. When the
crystal grows, it releases latent heat which diffuses away from the interface, and hence the
inner region becomes a heat source for the outer region. This heat flux is converted into
walkers, with each walker representing a certain discrete amount of heat. We define in each
coarse cell an integer variablemt

αβγ , which gives the number of walkers within this cell
at timet . For a specific heat which is independent of temperature, the density of walkers
is proportional to the difference between the actual and the initial temperatures; i.e., the
temperature in the outer region is related to the number of walkers by

ut
αβγ = −1

(
1− mt

αβγ

M

)
, (17)

where the constantM fixes the number of walkers in a cell that corresponds to the melting
temperatureu = 0.

The inner region is completely delimited by conversion cells. To fix the boundary condi-
tion for the integration on the fine grid, it is therefore sufficient to set the fieldu on all nodes
of the fine grid in each conversion cell to the value specified by Eq. (17). The diffusion
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equation is then timestepped in the inner region using the standard explicit scheme

ut+1t
i jk = ut

i jk +
D1t

(1x)2
(
ut

i+1 jk + ut
i−1 jk + ut

i j+1k + ut
i j−1k + ut

i jk+1+ ut
i jk−1− 6ut

i jk

)
.

(18)

Note that we have omitted for simplicity the source terms due to the phase field, which are
zero at the conversion boundary. Seen on a discrete level, this equation can be interpreted as
a “pipe flow” equation: the local change ofu is given by the sum of the “flow” through all
the discrete links (“pipes”), where, for example, the “flow” through a link alongx during
a timestep is given byD1t (ui+1 jk − ui jk )/(1x)2. For nodes at the boundary of the inner
region, some links cross the conversion boundary0′, which means that there is exchange of
heat with the neighboring conversion cell. This heat flux is collected by the conversion cell
and stored in a heat reservoir variableHt

αβγ . A symbolic manner to describe the updating
of Ht

αβγ is

Ht+1t
αβγ = Ht

αβγ +
D1t

(1x)2

(∑
bonds

ut
grid− ut

cc

)
, (19)

where the sum runs over all the bonds of the fine grid that cross0′, ugrid is the temperature
on a node of the fine grid, anducc is the temperature in the conversion cell given by Eq. (17).
For example, for a conversion cell(α, β, γ ) in contact with a buffer cell(α − 1, β, γ ), we
have (we recall that the linear dimension of a coarse cell isLcg = n1x)

Ht+1t
αβγ = Ht

αβγ +
βn∑

j=(β−1)n+1

γn∑
k=(γ−1)n+1

D1t

(1x)2
(
ut

i−1 jk − ut
i jk

)
, i = (α − 1)n+ 1.

(20)

If the stored quantity of heat exceeds a critical valueHc given by

Hc = nd1

M
, (21)

a walker is created at the center of the conversion cell andHc is subtracted fromHαβγ .
Conversely, if the local heat flux is negative (heat is locally flowingtoward the dendrite)
and Hαβγ falls below−Hc, a walker is removed from the cell andHc is added to the
reservoir. This algorithm exactly conserves the total heat if the contributions of the fine
grid, the reservoir variables, and the walkers are added. In dimensional quantities, each
walker is equivalent to an amount of heat1Q equal to

1Q = L(n1x)d1

M
. (22)

The walkers are restricted to the outer region. There are essentially two methods to handle
the walkers that attempt to jump back into the inner region across the conversion boundary.
The first is to deposit the heat content of the walker on the fine grid at the position where
it lands and to remove the walker. This increases the local temperature in the inner region.
The local flux through the conversion boundary is enhanced, and the probability of creating
a new walker close to the one just annihilated is consequently increased. The second is to
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simply discard the move and leave the walker in its old position. Ifc in Eq. (16) is small
enough, crossings are attempted almost only by walkers close to the conversion boundary,
i.e., by those that are already in conversion cells. Consequently, leaving the walker in its
place leads to an increase of the local temperature in the outer region, that is, in the boundary
condition for the inner region. The local flux is decreased, and hence the probability for the
absorption of the walker increases. Consequently, while the motion of individual walkers
is biased in the conversion cells, there is also a bias in the fluxes through the conversion
boundary, and both processes combined faithfully reproduce the diffusion equation. We
thoroughly tested both methods and found that they yielded on average identical results.
Since the second produced considerably less temperature fluctuations in the inner region,
it was adopted for all subsequent simulations.

In summary, the conversion process is handled using three auxiliary fields on the coarse
grid: the status fieldSαβγ which encodes the geometry of the buffer layer and the conversion
boundary, the fieldmαβγ that contains the number of walkers in each cell and is zero in
the inner region, and the heat reservoir fieldHαβγ , which is different from zero only in
conversion cells. Let us comment on the size of the grids and the resulting memory usage.
The fine grid needs to be large enough to accommodate the dendrite and the liquid buffer
layer during the whole time of the simulation. Especially in three dimensions, the restrictions
on storage space make it necessary to fully use the fine grid. The coarse grid needs to cover
at least the same space region as the fine grid. As will be detailed below, for an efficient
handling of the walkers close to the conversion boundary, it is desirable to always have
some portion of coarse grid in front of the conversion boundary, and hence the coarse
grid should actually cover a slightly larger region of space than the fine grid. Since the
coarse grid has far less nodes than the fine grid (1 node of coarse grid fornd nodes of
fine grid), this does not significantly increase the storage requirement. In addition, we need
an array to store the positions of the walkers. The latter are represented by “continuous”
positions and need no grid for their evolution. The walkers can therefore leave the region
of space where the grids are defined and diffuse arbitrarily far away from the dendrite,
allowing us to simulate growth into an infinite medium. The most storage-intensive part is
the fine grid. In fact, the limiting factor for most of our three-dimensional simulations is
not so much computation time, but rather the storage space needed to accommodate large
dendrites.

Finally, let us describe how the different parts of the algorithm are connected. The program
runs through the following steps:

1. Set up (or update) the status fieldSαβγ on the coarse grid to fix the geometry of the
conversion boundary.

2. Calculate the temperature in each conversion cell and set the boundary condition for
the inner region on the fine grid.

3. Timestep the phase-field and diffusion equations on the fine grid and calculate the
heat flux between the inner region and the conversion cells.

4. Update the heat reservoir variablesHαβγ and create or absorb walkers in the conversion
cells.

5. Advance the walkers.
6. Repeat steps 2 through 5. From time to time, extract the shape of the dendrite and

store it for future processing. If the phase boundary has moved by more than a coarse cell
size, go back to step 1.
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In the following sections, we will give more details on some features of our implemen-
tation, such as the updating of the walkers, the updating of the geometry, the choice of
parameters, and parallelization.

3.2. Updating Random Walkers

Before going into details, let us briefly point out similarities and differences between our
method and other DMC algorithms. Such methods are widespread in quantum Monte Carlo
(QMC) calculations where they are used to solve the Schr¨odinger equation in imaginary time
[7]. Each walker represents a configuration in a usually high-dimensional Hilbert space,
and the density of walkers is proportional to the square amplitude of the wave function. In
contrast, in our method the walkers evolve in real space, and their density represents the
temperature field. The most important difference, however, is that in QMC all walkers are
usually updated at the same time, whereas in our method some walkers are updated much
more rarely than others. Therefore, it would be very inefficient to visit every walker in each
timestep. Instead, we work with dynamical lists.

To simplify the bookkeeping of the different update times, we enforce that updating takes
place only at the discrete times when the fine grid is updated, i.e., fort = i1t , i = 1, 2, . . . .
Then, we can make a list for every timestep containing all the walkers that have to be
updated at that moment. However, these lists greatly vary in length and cannot easily be
accommodated in standard arrays of variables. Therefore, we define a data structure that
contains the coordinates of one walker plus a pointer variable. Within a given list, the pointer
associated with one walker indicates the next element of the list, or it contains an end of
list tag if the corresponding walker is the last one of the list. An array of pointer variables
indicates for each timestep the first element of the corresponding list. This array is the
“backbone” of the list structure. It is easy to add new walkers to a list: the pointer of the
new walker is set to the former first element of the list, and the pointer of the backbone is
set to the new walker (see Fig. 3). Lists of arbitrary length can be constructed, and every
walker is visited only when it actually has to be updated.

FIG. 3. Sketch illustrating the configuration of the dynamical walker lists. Each box stands for a walker, and
the full arrows indicate pointer variables; the “backbone” array of pointers is represented by the downward arrow
on the left. At timet , walkers are updated and prepended to the lists corresponding to their next update time, as
indicated by broken arrows.
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At a given timet , the program works through the corresponding list of walkers. The treat-
ment of each walker starts by our looking up the status of the coarse grid cell corresponding
to its position. If the walker is inside a buffer cell because the conversion boundary has
moved since its last update, it is removed. This removal does not violate heat conservation
because the heat associated with the walker is accounted for in the initialization of the
temperature field inside newly created buffer cells (see Section 3.3, Eq. (24) below). If it is
inside a conversion cell, and the corresponding reservoir variableHt

αβγ < −Hc, the walker
is removed andHc is added to the reservoir. In all other cases, the jump distance` and
corresponding time increment are determined and a new position is selected according to
Eq. (14). To apply Eq. (16) for the jump distance`, we need to determine the distance of
a walker to the conversion boundary. It would be very inefficient to calculate this distance
for each walker separately, especially when the shape of the boundary becomes complex.
Therefore, we use the status fieldSt

αβγ on the coarse grid in the outer region to store an
approximate value for this distance, which can then be easily looked up by each walker
before a jump. Additional details are given in Section 3.3.

As mentioned above, we restrict the walker updating to a discrete set of times. Therefore,
the time incrementτ in Eq. (14) has to be an integer multiple of the time step1t , which
would not be the case if we directly applied Eqs. (16) and (15). We solve this problem by
defining a lower cutoff for the jump distances,

`min =
√

2Dnt1t, (23)

wherent is a fixed integer, and replace the jump distances` found from Eq. (16) by the
closest integer multiple of̀min. We also define a maximum jump length`max, mainly to
limit the size of the backbone pointer array: with a maximum jump distance`max, each
walker is at least updated every`2

max/(2D1t) timesteps. Consequently, the discrete time
modulo this number can be used to index the pointer variables in the backbone array.

It should be mentioned that in our list structure, it is difficult to find a walker which is
close to a given position, because all sublists must be searched. This is important because
the number of walkers in the conversion cells has to be known for the interfacing with the
inner solution. To avoid time-consuming sweeps through the walker lists, we update the
walker number fieldmt

αβγ on the coarse grid whenever a walker jumps.

3.3. Updating the Geometry

We now describe more in detail how the status field on the coarse grid is set up and
adapted to the changing geometry. When the dendrite grows, the configuration of the buffer
layer and the conversion boundary has to change to maintain a constant thicknessLb of the
buffer layer. Cells which are part of the outer region at the beginning of the simulation may
become conversion cells, then part of the buffer layer, and finally part of the dendrite. Under
the conditions we want to simulate, the crystal may locally melt back, but no large regions
of space will undergo the transition from solid to liquid, and hence we do not consider
the inverse status change (from buffer to conversion cell, for example). Typically, at low
undercoolings a readjustment of the geometry becomes necessary only after 1000 to 10,000
timesteps. Therefore, the efficiency requirements are not as stringent as in the other parts
of the program.

The procedure starts with a sweep through the fine grid. Every cell of the coarse grid
which contains at least one node of the fine grid whereψ > 0 is assigned the status “solid”
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(St
αβγ = −2). Next, the solid cells at the boundary of the dendrite (i.e., each solid cell which

has at least one neighboring cell which is not solid) are used to define the buffer region: all
cells with a center-to-center distance less thanLb of a boundary cell which are not solid
are assigned the status “buffer” (St

αβγ = −1). When a conversion cell or a cell of the outer
region becomes a buffer cell, we need to define the initial values of the two fields on the
fine grid. The phase field is set to its liquid value,ψ = −1. The temperature is calculated
from the total heat contained in the cell, taking into account both the walkers and the heat
reservoir variables in the conversion cells to ensure that the total amount of heat remains
conserved, i.e.,

uinit = 1

M

(
mt
αβγ − M + Ht

αβγ

/
Hc
)
. (24)

All nodes of the fine grid within the new buffer cell are initially assigned this value. The
walkers contained in the cell are removed.

All cells of the outer region which are adjacent to the buffer, i.e., which have at least one
neighbor with buffer status, are conversion cells (St

αβγ = 0). When a cell of the outer region
becomes a conversion cell, its heat reservoir variable is initialized at zero.

Finally, in the outer region, which is comprised of all the other cells, the status field
is used to store an approximate value for the distance from the conversion boundary. A
precise determination of this distance is rather costly in computation time, because for
each cell in the outer region, we must calculate the distance to all conversion cells and
retain the minimum value. A much cheaper, albeit approximate method is the following.
As mentioned, in a conversion cell we haveSt

αβγ = 0. We assign to all cells adjacent to a
conversion cell the valueSt

αβγ = 1. Neighbors of the latter receive the valueSt
αβγ = 2, and

we continue this process outward by assigning the valueSt
αβγ = i + 1 to all cells adjacent

to a cell withSt
αβγ = i . For a relatively simple geometry such as a single growing dendrite,

the status field can be correctly set up on the whole lattice during a single outward sweep,
starting from the center of the dendrite. The number assigned to a given cell can be used as
a measure for the distance. Note that the exact relationship of the number to the distance
depends on the direction with respect to the axes of the coarse grid; our numerical tests
below show, however, that this anisotropy in the distance function does not significantly
influence the dendrite shapes.

If we follow this procedure, the coarse grid needs to cover the entire region of space where
the jump distance varies. Even though we introduce a large-scale cutoff`max, this would
become prohibitive in terms of memory usage for truly multiscale problems. Fortunately,
such a sophisticated scheme for the determination of the distance is mainly needed close
to the dendrite (for example, a walker that enters in the space between two dendrite arms
needs to make small steps). Once a walker has left the vicinity of the dendrite, this rather
complicated estimate for the distance to the conversion boundary can be replaced by a
simpler one, for example the distance to the closest dendrite tip. In consequence, the coarse
grid needs to cover only a slightly larger region of space than the fine grid.

Finally, let us comment on the integration of the phase-field equations in the inner re-
gion. We need to know which part of the fine grid must be timestepped. This information is
encoded in the status fieldSt

αβγ on the coarse grid. It would, however, be rather inefficient
in terms of memory access time to integrate the inner region “coarse cell by coarse cell.”
Instead, integration proceeds along the spatial direction corresponding to successive mem-
ory locations, which is thex-direction in our implementation. During the updating of the
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status field, the program determines for eachy andzcoordinate the range(s) to be integrated
alongx and keeps this information in a lookup table. This table is updated every time the
status field changes.

3.4. Choice of Computational Parameters

There are a number of parameters in our algorithm which can be adjusted to maximize
the computational efficiency. However, certain restrictions apply. First, there are various
length scales. In order of increasing magnitude, those are:

1. the lattice spacing of the fine grid,1x,
2. the minimum jump length of the walkers,`min,
3. the size of a coarse-grained cell,Lcg = n1x, and
4. the buffer thicknessLb.

The minimum jump length should be of the order of the inner grid spacing to assure a precise
interfacing between inner and outer solutions. Since a larger`min means less frequent walker
updating we usually worked with̀min ≈ 21x, ornt ≈ 10 in Eq. (23). However,̀min has to
be smaller thanLcg to achieve a well-defined coarse-graining. The coarse-graining length,
in turn, is limited by geometrical constraints. The conversion boundary appears “jagged”
on the scale ofLcg (see Fig. 2). To render the effects of this coarse geometry irrelevant for
the interface evolution, the buffer thickness must be much larger than this scale,LbÀ Lcg.
We found thatLcg ≈ 0.1 Lb is sufficient to achieve this goal. In our simulations, we mostly
worked withn = 4 (Lcg ≈ 2`min) andn = 8 for larger buffer sizes.

Next, consider the constant of proportionalityc between the walker jump length and the
distance to the conversion boundary,dcb. Since the Gaussian random vectorξ in Eq. (14) has
no cutoff, steps of arbitrary length are possible, and hence even a walker which is far away
can jump directly to the conversion boundary. The number of such events has to be kept
small, because otherwise the conversion process is influenced by the far field with its coarse
length and time scales. This goal can be naturally achieved by choosingc small enough.
For example, forc = 0.1, only jumps with a length of more than 10 standard deviations
can reach the conversion boundary, which represents a negligible fraction. However, the
increase of̀ with distance determines the efficiency of the algorithm, and hencec should
be chosen as large as possible. We usually worked withc = 0.1, which seems to provide a
good compromise.

Finally, the parameterM determines the number of walkers per coarse cell and hence the
precision of the stochastic representation for the temperature field and the diffusion equation.
Considering Eq. (17), we see that the temperature at the boundary of the inner region takes
discrete values spaced by1/M . In addition, for a homogeneous distribution of walkers in
a system atu = 0, the temperature fluctuations are of order1/

√
M . However, increasing

M means longer computation time because more random walks have to be performed. In
addition, the total number of walkersN necessary to simulate a dendrite of final volumeV
is

N = MV

(n1x)d1
, (25)

which means that high values ofM become prohibitive, especially at low undercooling.
Fortunately, a good precision of the solution can be obtained also by increasingLb, as will
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be described in Section 4. In practice, we worked with values ofM ranging between 25 and
100.

3.5. Boundary Conditions and Symmetries

For a two-dimensional dendrite seeded at the origin and with arms growing along the
x- and y-directions, the simulations can be accelerated by taking advantage of the cubic
symmetry. There are several symmetry axes, and consequently it is sufficient to integrate the
equations in a part of the plane while imposing reflective boundary conditions at the proper
axes to enforce the symmetry. These boundary conditions have to be imposed both on the
fine grid and for the walkers. For the symmetry axes atx = 0 andy = 0, this can be easily
achieved by choosing one of the nodes of the coarse grid to coincide with the origin. Then,
the two symmetry axes coincide with bonds in the coarse grid. On the fine grid, the nodes
outside the simulation domain but adjacent to the boundary are set to the values of their
mirror images inside the simulation domain after each timestep. Walkers that attempt to
cross the boundaries are reflected; i.e., instead of a walker’s “true” final position outside the
simulation domain, its mirror image with respect to the symmetry axis is chosen. Another
interpretation of this boundary condition for the walkers is to imagine that there exists an
ensemble of “mirror walkers” which are the images of the walkers inside the simulation
domain. When a walker jumps outside of the simulation domain, its mirror image jumps
inside, and interchanging the walker and its mirror, we just obtain a reflection of the walker
at the boundary as above.

The latter view is useful when considering the last symmetry axis, the diagonalx = y.
While the boundary conditions on the fine grid and for the walkers can be implemented as
before, the conversion process requires special attention, because the symmetry axis does
not coincide with the boundaries of a coarse cell. When a walker enters a coarse cell situated
on the diagonal, there is an additional “mirror walker” enteringthe samecoarse cell (see
Fig.4), and hence the number of walkersmt

αβγ has to be increased by two (or, equivalently,
decreased by two if a walker leaves the cell). Similarly, walkers are created and absorbed
in pairs, which means that walker creation in such a cell can occur only when the heat
reservoir exceeds twice the equivalent of one walker. In addition, when calculating the

FIG. 4. Sketch illustrating the implementation of reflecting boundary conditions at the symmetry axisx = y.
Shown is a cell of the coarse grid (solid lines) on the diagonalx = y (dashed line). A walker inside the simulation
domain (x > 0, 0< y < x) enters the cell. An accompanying “mirror walker” (open circles), the image of the
walker with respect to the symmetry axis, enters the same cell.
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heat flux received by conversion cells on the diagonal, we must take into account both the
“real” and the “mirror” flux. It is clear that this procedure induces an anisotropy in the
conversion process; our tests showed, however, that its effect is undetectable for reasonable
buffer thickness.

In three dimensions, the reduction in computational resources is even more dramatic.
For example, using the symmetry planesy = 0, x = y, andx = z, i.e., integrating only the
domainx > 0, 0< y < x, z> x, we need only integrate 1/48 of the full space, i.e., 1/8
of one dendrite arm. The planesx = y andx = z can be handled as described above, with
the exception of cells on the diagonalx = y = z. Such cells actually have only 1/6 of their
volume within the simulation domain, and for each walker entering a cell, there are five
mirror walkers to be considered.

3.6. Parallelization

Even though our algorithm is very efficient as will be shown below, the demands on com-
putation time and RAM storage space rapidly increase when the undercooling is lowered.
Therefore, we have developed a parallel version of our code for the Cray T3E at the National
Energy Research Scientific Computing Center (NERSC), using the shared memory library
SHMEM.

We are mainly interested in the development of a single primary dendrite branch. Hence,
an efficient method of parallelization is to divide the simulation domain into “slices” normal
to the growth direction, and to distribute the slices among the processors. In the inner
region, the integration of the partial differential equations makes it necessary to exchange
the boundary values between neighboring processors after each timestep. This is a standard
procedure. The more delicate points are the handling of the walkers and the updating of the
geometry.

Each processor stores only the parts of the fine grid it has to integrate, along with the
values of the status field in the whole simulation domain. The latter is necessary to correctly
handle the walkers. For the walkers which are far from the dendrite, the average jump
distance may become much larger than the thickness of a computational slice. But if a
walker approaches the conversion boundary, the conversion process has to be handled by
the “local” processor which contains the appropriate part of the fine grid. Therefore, the
walkers need to be redistributed after their jumps. We have found it sufficient to implement
“exchange lists” between neighboring processors, i.e., processors which contain adjacent
parts of fine grid. If a walker jumps to a position outside of the local slice, it is stored in
one of two lists, corresponding to “upward” and “downward” motion. After each timestep,
these lists are exchanged between neighboring processors. As most of the walkers make
several small steps before reaching the conversion boundary, this procedure assures the
correct redistribution of walkers with insignificantly few errors, which arise in the rare case
that a walker arrives at the conversion boundary after several large jumps.

The only step of the algorithm which needs massive exchange of data between the pro-
cessors is the updating of the geometry: each processor has to determine locally the “solid”
part of its computation domain, and this information has to be exchanged to correctly set
up the whole status field on each processor. However, as mentioned earlier, the geometry is
updated only rarely, and therefore this part of the algorithm does not represent a significant
computational burden. We have found that the parallel version of our code showed satis-
factory execution time scaling when the number of processors is increased.
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4. NUMERICAL TESTS

The accuracy of the standard phase-field method has been assessed in detail by com-
parison to boundary integral results [29]. Therefore, to test the stochastic algorithm it is
sufficient to check its results against direct simulations of the standard deterministic phase-
field equations. The most critical questions are whether the use of the rather coarse lattice
for the conversion introduces spurious anisotropy and what is the magnitude of the tempera-
ture fluctuations generated by the stochastic treatment of the far field. The main parameters
which control both of these effects are the thickness of the buffer layer and the numberM of
walkers generated per coarse cell. The boundary condition for the inner region is imposed
on a coarse geometry with a cutoff scale ofn1x, and the temperature at the boundary
is a stochastic variable which changes as walkers are created, absorbed, enter, or leave a
conversion box, and which assumes discrete values spaced by1/M . When the buffer layer
is much larger than the size of a coarse cell,LbÀ n1x, the field is “smoothed out” in
space and time by the diffusive dynamics. We expect high spatial and temporal frequencies
to decay rapidly through the buffer layer and hence the evolution of the interface to become
smoother asLb is increased.

We conducted two-dimensional simulations at an intermediate undercooling,1 = 0.3.
At this value of1, the standard phase-field method can still be used to simulate nontrivial
length and time scales of dendritic evolution, but the length scale of the diffusion field
is large enough to provide a serious test for the random walker method; i.e., the diffusion
length is much larger than the thickness of the buffer layer. Table I shows the computa-
tional parameters that were used for these tests. Only the first quadrant was simulated, with
reflecting boundary conditions atx = 0 andy = 0. Figure 5a shows a comparison of den-
drite shapes obtained from the standard phase-field and from our algorithm with different
buffer sizes. While the shapes slightly differ forLb/1x = 20, the curve forLb/1x = 40
is almost indistinguishable from the deterministic shape. Figure 5b shows the velocity of
the dendrite tip along thex-direction, measured over periods of 500 iterations, versus time.
The fluctuations around the deterministic value are much larger forLb/1x = 20 than for
Lb/1x = 40, and forLb/1x = 80 (not shown) the curve obtained from the stochastic

TABLE I

Computational Parameters for the Benchmark Simulations in Two

Dimensions with Vanishing Interface Kinetics (i.e.,β(n̂) = 0)

Quantity Symbol Value

Interface thickness W0 1
Anisotropy ε4 0.025666, 0.000666
Effective Anisotropy εe

4 0.025, 0.0
Relaxation time τ0 1
Grid spacing 1x 0.4
Timestep 1t 0.003
Diffusion coefficient D 10
Coupling constant λ 15.957
Capillary length d0 0.0554
Undercooling 1 0.3
Coarse cell size n 4
Number of walkers per coarse cell M 50
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FIG. 5. Comparison of standard (deterministic) phase-field and random walker method in two dimensions
for1 = 0.3 andε4 = 0.025. (a) Dendrite shapes, represented by the contour lineφ = 0, after 200,000 iterations;
(b) tip velocity versus time.

method is very close to the deterministic data. For comparison, the diffusion length 2D/v
at the end of the run is about 4001x.

A particularly sensitive test for the anisotropy of the conversion process is the growth
of a circular germ without anisotropy, because such a germ is unstable against even the
smallest perturbations. This can be clearly seen from Fig. 6: even though we completely
screen the fourfold anisotropy created by the lattice (εe

4 = 0), the weak next harmonic of the
lattice anisotropy, proportional to cos 8θ , destabilizes the circle and leads to the formation of
bulges in the(21)- and(12)-directions. ForLb/1x = 80, the stochastic algorithm perfectly
reproduces this trend, and we can hence conclude that the anisotropy created by the coarse
structure of the conversion boundary is negligible. Note that the diffusion field extends to a
distance of more than 1000 lattice units at the end of this run, which means that the larger
part of the simulation domain is integrated by the stochastic method.

To quantify the numerical noise, we performed 2-d simulations of the simple diffusion
equation in a system ofN × N lattice sites withN = 160. One-half of the system (x < 0)
was integrated by the stochastic algorithm, whereas in the other half (x > 0) we used a
standard Euler algorithm. The conversion boundary0′ hence coincides with they-axis, and
there is a single column of conversion cells along this axis. We used1x = 1,1t = 0.02,
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FIG. 6. Comparison of “dendrite” shapes without fourfold anisotropy after 500,000 iterations.

D = 1, and1 = 1, and we applied no-flux boundary conditions atx = ±N/2 and periodic
boundary conditions alongy. The system was initialized atu = 0 everywhere; i.e., in the
walker region we randomly placedM walkers in each coarse cell. When the walkers evolve,
fluctuations are created in the deterministic region, which plays the role of the buffer layer.
We recordedu2 as a function ofx and averaged over a time which is long compared to
the diffusive relaxation time of the system,N2/D. The results for two different choices
of the walker parameterM are shown in Fig. 7. In an infinite homogeneous system filled
with walkers, the distribution of the number of walkers in a given coarse cell is Poissonian,
which means that the fluctuations in the walker numbers are of order

√
M . If this scaling

remains valid for the conversion cells in our hybrid system, we expect〈u2〉 ∼ 1/M close
to the conversion boundary, which is indeed well satisfied. As shown in Fig. 7, the variance
of the temperature fluctuations rapidly decreases with the distance from the conversion
layer—by four orders of magnitude over the distance of 80 lattice sites. No simple functional
dependence of〈u2〉 onx is observed. We expect high spatial and temporal frequencies to be
rapidly damped. A theoretical calculation of〈u(x)2〉 seems possible but nontrivial because

FIG. 7. Variance of temperature fluctuations,〈u2〉, as a function of the distance from the conversion boundary
for two values of the walker parameterM .
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TABLE II

Execution Times of the Benchmark Simulations for Various Sets

of Computational Parameters

M Lb/1x CPU time (min)

Deterministic — — 1950
50 20 89
50 40 110

100 40 119

the random variables which are the sources of the fluctuations in the deterministic region are
correlated in space and time by the exchange of walkers through the stochastic region and
the diffusion of heat through the deterministic region. For our present purpose, we can draw
two important conclusions. First, for a reasonable thickness of the buffer layer, fluctuations
are damped by several orders of magnitude. The residual fluctuations are much smaller
than the thermal fluctuations represented by Langevin forces that have to be introduced
in the equations of motion to observe a noticeable sidebranching activity [30]. Indeed, for
sufficiently large buffer layers we always observe needle crystals without sidebranches.
Second, the fluctuations at the solid–liquid interface can be reduced both by increasing the
number of walkers and by increasing the thickness of the buffer layer, which allows us to
accurately simulate dendritic evolution with a reasonable number of walkers.

In Table II, we compare the run times of our code on a DEC Alpha 533 MHz workstation
along with the run time of the deterministic phase-field reference simulation. The gain in
computational efficiency is obvious. Increasing the buffer layer fromLb = 201x to Lb =
401x reduces the amplitude of the temperature fluctuations at the solid-liquid interface by
more than an order of magnitude, whereas the computation time increases by only 25%.
Comparing the runs with different values ofM , we see that the walker part of the program
accounts only for a small part of the total run time.

From these results, we can conclude that the computational effort that has to be invested
to simulate a given time increment scales approximately as the size of the fine grid region,
i.e., as the size of the dendrite. This is a major advance with respect to the standard phase-
field implementation on a uniform grid, where the computation time scales with the volume
enclosing the diffusion field. The spatial and temporal scales of dendritic evolution that
can be simulated with our method are hence limited by the integration of the phase-field
equations on the scale of the dendrite.

We did not directly compare the performance of our code to that of more conventional
multigrid or adaptive meshing algorithms. We expect, however, that the number of floating
point operations required to carry out a given low undercooling simulation should be of the
same order of magnitude in these codes and ours for two main reasons. First, the most time-
consuming part of the calculation is to track the interface evolution, which must be done
with a similar spatial resolution in all codes. Second, the overhead arising from updating
the geometry and interfacing the finite difference and DMC algorithms in our code should
be at most comparable to the overhead of regridding with several grid levels in conventional
codes. We emphasize once more that the main advantage of the present hybrid method is
its simple and straightforward implementation. In practice, 450 (600) lines of FORTRAN
in 2-d (3-d) needed to be added to the conventional phase-field codes to implement the
complete multiscale algorithm.
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FIG. 8. Snapshots of a three-dimensional dendrite at1 = 0.1 after 60,000, 120,000, 200,000, 300,000, and
650,000 timesteps (from top left). The computational parameters are given in the text and differ from those of
Table I used in two-dimensional simulations.

All the data shown so far are for two-dimensional simulations. We repeated similar tests
in three dimensions and obtained comparable results for the quality of the solution and
the efficiency of the code. We will not display the details of these comparisons here, but
rather we show an example of a three-dimensional simulation under realistic conditions
to demonstrate that our method is capable of yielding quantitative results in a regime of
parameters that was inaccessible up to now. In Fig. 8, we show snapshot pictures of a three-
dimensional dendrite growing at an undercooling of1 = 0.1 and for a surface tension
anisotropyεe

4 = 0.025, which is the value measured for PVA [24]. The other computational
parameters areW0 = 1,1x = 0.8,ε4 = 0.0284,τ0 = 0.965,δ4 = 0.0364,n = 4, M = 50,
Lb/1x = 48,D = 24,1t = 0.004, andλ = 39.6. These parameters yield a local interfacial
equilibrium Gibbs–Thomson condition with a capillary lengthd0 = 0.0223 andβ(n̂) = 0
(see the Appendix for additional details). The simulation was started from a homogeneously
undercooled melt with an initial solid germ of radiusr = 21x centered at the origin. During
the run, we recorded the velocityv(t) and the radius of curvatureρ(t) of the dendrite tip.
The latter was calculated using the method described in Ref. [29]. With these two quantities,
we can calculate the time-dependent tip selection parameter

σ ∗(t) = 2Dd0

[ρ(t)]2v(t)
. (26)

The results are shown in Fig. 9. In the initial stage during which the arms emerge from the
initial sphere, growth is very rapid. Subsequently, the tips slow down while the diffusion
field builds up around the crystal.

At the end of the run, the velocity has almost converged to a constant value. According to
solvability theory, this steady-state velocity should depend only on the undercooling and the
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FIG. 9. Tip velocity, tip radius, and selection parameter versus time for the run of Fig. 8. Arrows mark the
times of the snapshot pictures. Length and time are rescaled byd0 andd2

0/D, respectively. The steady-state velocity
vss was calculated using a boundary integral method [18].

value of the anisotropy. In Table III, we show that the velocities obtained in the present sim-
ulations are in excellent quantitative agreement with the velocity predicted by the boundary
integral solution of the sharp-interface steady-state growth equations assuming an axisym-
metric surface energy and tip shape (i.e., the most accurate numerical implementation of
solvability theory to date [18]). We also find reasonably good agreement with the velocity
predicted by the linearized solvability theory of Barbieri and Langer [31], even though the
actual tip radius in both the phase-field simulation and the boundary integral calculation
differ from the tip radius of the paraboloidal shape assumed in this theory. A more de-
tailed discussion of this point and the entire steady-state tip morphology can be found in
Ref. [18].

Remarkably, the selection constantσ ∗ becomes almost constant long before the velocity
and the tip radius have reached their steady-state values. For the run in Fig. 9,σ ∗ varies by
less than 1% over the last 80% of the run, whereas bothρ andv vary by more than 10%
over the same time span. This is in good agreement with the concepts of solvability theory,
which stipulates that the selection of the tip parameters is governed by the balance between
the anisotropic surface tension and the local diffusion field at the tip. To establish the correct
local balance, diffusion is necessary only over a distance of a few tip radii, whereas the
buildup of the complete diffusion field around an arm requires heat transport over the scale
of the diffusion length, 2D/v. Our simulation shows thatσ ∗ indeed becomes essentially

TABLE III

Dimensionless Steady-State Tip Velocity ˜v = vd0 /D as Obtained from the Present Phase-Field

Simulations, Boundary Integral Calculations [18], and the Linearized Solvability Theory [31]

Boundary Solvability
1 ε4 Phase field integral theory

0.2 0.025 1.10× 10−3 1.07× 10−3 1.31× 10−3

0.2 0.0125 5.51× 10−4 5.17× 10−4 5.74× 10−4

0.1 0.025 1.37× 10−4 1.35× 10−4 1.60× 10−4
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constant soon after the formation of the primary arms. This fact can be used to derive scaling
laws for the evolution of the dendrite arms at low undercooling during the transient that leads
to steady-state growth [17]. Finally, even at the end of the simulations, where the dendrite
arms are well developed, no sidebranches are visible. We repeated the same simulation for
different thickness of the buffer layer and observed no changes in the morphology. Tiny
ripples can in fact be seen close to the base of the dendrite shaft, but the amplitude of
these perturbations does not depend on the noise strength. We therefore believe that this is
a deterministic instability due to the complicated shape of the dendrite base rather than a
beginning of noise-induced sidebranching. In summary, there are at present no indications
that the noise created by the walkers has a noticeable effect on the morphological evolution.

5. CONCLUSIONS

We have presented a new computational approach for multiscale pattern formation in
solidification. The method is efficient, robust, precise, easy to implement in both two and
three dimensions, and parallelizable. Hence, it constitutes a powerful alternative to state
of the art adaptive meshing and finite element techniques. We have illustrated its useful-
ness by simulating dendritic growth of a pure substance from its undercooled melt in an
infinite geometry. Because only a very limited amount of “geometry bookkeeping” is re-
quired, our method can be easily adapted to other experimental settings, such as directional
solidification. In addition, the DMC algorithm is not limited to the present combination
with the phase-field method but can be used in conjunction with any method to solve the
interface dynamics, as long as the diffusion equation is explicitly solved. The adaptation of
our method to other diffusion-limited free-boundary problems is straightforward; problems
with several diffusion fields can be handled by introducing multiple species of walkers.

In view of the results presented here, there is a realistic prospect for direct simulations
of solidification microstructures for experimentally relevant control parameters. An espe-
cially interesting prospect is to combine our method with a recently developed approach to
quantitativelyincorporate thermal fluctuations [30] in the phase-field model. Such an exten-
sion should make it possible to test noise-induced sidebranching theories [16, 32] in three
dimensions and for an undercooling range where detailed measurements of sidebranching
characteristics are available [22, 26, 33, 34]. If thermal noise in the liquid region outside
the buffer layer turns out to be unimportant for sidebranching, the straightforward addition
of Langevin forces as in Ref. [30] in the finite difference region (i.e., the buffer region
plus the solid) should suffice for this extension. In contrast, if the noise from this region is
important, a method to produce the correct level of noise in the walker region will need to
be developed. Work concerning this issue is currently in progress.

To conclude, let us comment on some possible extensions and improvements of our
method which will be necessary to address certain questions. First, we have described the
method here using an explicit integration scheme on the fine grid in the inner region, which
enforces rather small time steps. We also tested an alternating direction Crank–Nicholson
scheme in 2-d, which speeds up the calculations but makes it necessary to introduce correc-
tive terms at the conversion boundary to guarantee the local heat conservation. Second, for
the moment we use the stochastic algorithm only at theexteriorof the dendrite; for other
geometries, such as directional solidification where the volumes of solid and liquid are com-
parable, it might be useful to introduce a second stochastic region in the solid. It would also
be desirable to combine our algorithm with more efficient memory managing techniques
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to overcome the limitations due to storage space. Finally, a completely open question is
whether it is possible to combine our stochastic algorithm with a suitable method for sim-
ulating hydrodynamic equations. This would open the way for studies of the influence of
convection on dendritic evolution at low undercooling, thereby extending in a nontrivial
way recent studies that have been restricted to a relatively high undercooling regime [35].

APPENDIX: PHASE-FIELD METHOD

We will briefly outline the main features of the phase-field method used for our simula-
tions. More details can be found in Ref. [29].

The starting point is the free energy functional, Eq. (9), together with the equations of
motion for the phase field and the temperature field, Eqs. (10) and (11). The free energy
density in Eq. (9) is chosen to be of the form

f (ψ, u) = −ψ
2

2
+ ψ

4

4
+ λuψ

(
1− 2

ψ2

3
+ ψ

4

5

)
. (A.1)

This function has the shape of a double well, with minima atψ = ±1 corresponding to the
solid and the liquid phases, respectively. Here,u is the dimensionless temperature field,λ is
a dimensionless coupling constant, and the term proportional tou on the RHS of Eq. (A.1)
“tilts” the double well in order to favor the solid (liquid) minimum when the temperature
is below (above) the melting temperature. The coefficientW(n̂) of the gradient term in the
free energy (9) determines the thickness of the diffuse interface, i.e., the scale on which the
phase field varies rapidly to connect the two equilibrium values. In addition,W is related to
the surface tension, and exploiting its dependence on the orientation of the interface allows
us to recover the anisotropic surface tension of Eq. (5) by choosing

W(n̂) = W0
γ (n̂)

γ0
= W0a(n̂). (A.2)

The orientation̂n is given in terms of the phase field by

n̂ = ∇ψ|∇ψ | . (A.3)

Note that this dependence ofW on ψ has to be taken into account in performing the
functional derivative, such that the explicit form of Eq. (10) becomes

τ(n̂)∂tψ = [ψ − λu(1− ψ2)](1− ψ2)+∇ · [W(n̂)2∇ψ ] + ∂x

(
|∇ψ |2W(n̂)

∂W(n̂)

∂(∂xψ)

)
+ ∂y

(
|∇ψ |2W(n̂)

∂W(n̂)

∂(∂yψ)

)
+ ∂z

(
|∇ψ |2W(n̂)

∂W(n̂)

∂(∂zψ)

)
. (A.4)

The phase-field equations can be related to the original free-boundary problem by the
technique of matched asymptotic expansions. Details on this procedure can be found in
Ref. [29]. As a result, for the capillary length and the kinetic coefficient in terms of the
phase-field parametersW0 andτ(n̂), we obtain the expressions

d0 = a1W0

λ
, (A.5)
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β(n̂) = a1

λ

τ(n̂)

W0

(
1− a2λ

W(n̂)2

Dτ(n̂)

)
, (A.6)

wherea1 = 0.8839 anda2 = 0.6267 are numerical constants fixed by a solvability condi-
tion. There is an important difference between this result and earlier matched asymptotic
expansions of the phase-field equations, owing to a different choice of the expansion pa-
rameter. If the coupling constantλ is used as the expansion parameter, the first order in
λ gives only the first term in Eq. (A.6), while the complete expression is the result of an
expansion to first order in the interface P´eclet number, which is defined as the ratio of the
interface thickness and a relevant macroscopic scale of the pattern (local radius of curvature
or diffusion length). An important consequence of Eq. (A.6) is that the kinetic coefficient
and its anisotropy can be set to arbitrary values by a suitable choice ofλ and τ(n̂). In
particular, we can achieve vanishing kinetics (β(n̂) = 0) by choosing

τ(n̂) = τ0[a(n̂)]2 (A.7)

andλ = Dτ0/(a2W2
0 ). As a consequence, the ratiod0/W0 can be decreased without chang-

ing the kinetics by simultaneously increasingλ and the diffusivityD. This method dra-
matically increases the computational efficiency of the phase-field approach, because the
interface widthW0 determines the grid spacing which must be used for an accurate numer-
ical solution. For a physical system with fixed capillary lengthd0, the number of floating
point operations necessary to simulate dendritic evolution for some fixed time interval and
system size scales∼(d0/W0)

d+3 for the choice of phase-field parameters where the interface
kinetics vanish (i.e.,Dτ0/W2

0 ∼ λ ∼ W0/d0), whered is the spatial dimension [29].
We integrate the phase-field equations on a cubic grid with spacing1x. All spatial

derivatives are discretized using(1x)2-accurate finite difference formulas, and timestep-
ping is performed by a standard Euler algorithm. The use of a regular grid induces small
anisotropies in the surface tension and the kinetic coefficient. These effects have been pre-
cisely quantified in Ref. [29]. Since the grid has the same symmetry as the crystal we want
to simulate, the presence of the lattice simply leads to small shifts in the surface tension
anisotropy and in the kinetic parameters. Evidently, the use of this method restricts the simu-
lation to crystals with symmetry axes aligned to the lattice, but this is not a severe limitation
in the present study, which focuses on the growth of single crystals. The effective surface
tension anisotropyεe

4 is slightly smaller than the “bare” valueε4. The kinetic corrections
are negligible for grid spacings up to1x/W0 ≈ 0.5, and hence for the 2-d test simulations
we can apply Eq. (A.7). For larger lattice spacings, this equation has to be replaced by

τ(n̂) = τ0 (1− 3δ4)

[
1+ 4δ4

1− 3δ4

(
n4

x + n4
y + n4

z

)]
, (A.8)

where the kinetic anisotropyδ4 has to be determined numerically. In Ref. [29], it has been
shown that a good precision can be maintained up to grid spacings1x/W0 = 0.8, and we
use these optimized parameters for the 3-d simulations. The phase field varies between
±0.95 over a spatial region of width≈4W0. This means that for1x/W0 = 0.8, there are
still about five points well within the interfacial region, providing a sufficiently accurate
resolution.



618 PLAPP AND KARMA

ACKNOWLEDGMENTS

This research was supported by U.S. DOE Grant No. DE-FG02-92ER45471 and benefited from computer
time at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National
Laboratory and at the Northeastern University Advanced Scientific Computation Center (NU-ASCC). We thank
Youngyih Lee for providing the boundary integral results and Flavio Fenton for his help with the visualization.
Figure 8 was created using Advanced Visual Systems’ AVS.

REFERENCES

1. W. Kurz and D. J. Fisher,Fundamentals of solidification(Trans. Tech., Aedermannsdorf, Switzerland, 1992).

2. M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, and Y. Sawada, Fractal structures of zinc metal leaves
grown by electrodeposition,Phys. Rev. Lett. 53, 286 (1984).

3. E. Ben-Jacob, H. Shmueli, O. Shochet, and A. Tenenbaum, Adaptive self-organization during growth of
bacterial colonies,Physica A187, 378 (1992).

4. R. J. Braun and M. T. Murray, Adaptive phase-field computations of dendritic crystal growth,J. Cryst. Growth
174, 41 (1997).

5. A. Schmidt, Computations of three-dimensional dendrites with finite elements,J. Comput. Phys. 125, 293
(1996).

6. N. Provatas, N. Goldenfeld, and J. Dantzig, Efficient computation of dendritic microstructures using adaptive
mesh refinement,Phys. Rev. Lett. 80, 3308 (1998); Adaptive mesh refinement computation of solidification
microstructures using dynamic data structures,J. Comput. Phys. 148, 265 (1999).

7. S. E. Koonin and D. C. Meredith,Computational Physics(Addison-Wesley, Redwood City, 1992), Chap. 8.

8. L. P. Kadanoff, Simulating hydrodynamics: A pedestrian model,J. Stat. Phys. 39, 267 (1985).

9. S. Liang, Random-walk simulations of flow in Hele Shaw cells,Phys. Rev. A33, 2663 (1986).

10. T. Vicsek, Pattern formation in diffusion-limited aggregation,Phys. Rev. Lett. 53, 2281 (1984).

11. J. Nittmann and H. E. Stanley, Tip splitting without interfacial tension and dendritic growth patterns arising
from molecular anisotropy,Nature321, 663 (1986).

12. A. Karma, Beyond steady-state lamellar eutectic growth,Phys. Rev. Lett. 59, 71 (1987).

13. Y. Saito and T. Ueta, Monte Carlo studies of equilibrium and growth shapes of a crystal,Phys. Rev. A40,
3408 (1989).

14. P. Meakin, Diffusion-controlled cluster formation in 2–6-dimensional space,Phys. Rev. A27, 1495
(1983).

15. E. Brener, H. M¨uller-Krumbhaar, and D. Temkin, Structure formation and the morphology diagram of possible
structures in two-dimensional diffusional growth,Phys. Rev. E54, 2714 (1996).

16. J. S. Langer, Dendritic sidebranching in the three-dimensional symmetric model in the presence of noise,
Phys. Rev. A36, 3350 (1987).

17. M. Plapp and A. Karma, Multiscale random-walk algorithm for simulating interfacial pattern formation,Phys.
Rev. Lett. 84, 1740 (2000).

18. A. Karma, Y. Lee, and M. Plapp, Three-dimensional dendrite tip morphology at low undercooling,Phys. Rev.
E 61, 3996 (2000).

19. J. S. Langer, Instabilities and pattern formation in crystal growth,Rev. Mod. Phys. 52, 1 (1980).

20. D. A. Kessler, J. Koplik, and H. Levine, Pattern selection in fingered growth phenomena,Adv. Phys. 37, 255
(1988).

21. E. A. Brener and V. I. Mel’nikov, Pattern selection in two-dimensional dendritic growth,Adv. Phys. 40, 53
(1991).

22. S.-C. Huang and M. E. Glicksman, Fundamentals of dendritic solidification I. Steady-state tip growth,Acta
Metall. 29, 701 (1981).

23. E. R. Rubinstein and M. E. Glicksman, Dendritic growth kinetics and structure I. Pivalic acid,J. Cryst. Growth
112, 84 (1991).



METHOD FOR SIMULATING DENDRITIC SOLIDIFICATION 619

24. M. Muschol, D. Liu, and H. Z. Cummins, Surface-tension-anisotropy measurements of succinonitrile and
pivalic acid: Comparison with microscopic solvability theory,Phys. Rev. A46, 1038 (1992).

25. M. E. Glicksman, M. B. Koss, and E. A. Winsa, Dendritic growth velocities in microgravity,Phys. Rev. Lett.
73, 573 (1994).

26. U. Bisang and J. Bilgram, Shape of the tip and the formation of sidebranches of xenon dendrites,Phys. Rev.
E 54, 5309 (1996).

27. J. A. Sethian and J. Strain, Crystal growth and dendritic solidification,J. Comput. Phys. 98, 231 (1992).

28. T. Ihle and H. M¨uller-Krumbhaar, Fractal and compact growth morphologies in phase transitions with diffusion
transport,Phys. Rev. E49, 2972 (1994).

29. A. Karma and W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions,
Phys. Rev. E57, 4323 (1998).

30. A. Karma and W.-J. Rappel, Phase-field model of dendritic sidebranching with thermal noise,Phys. Rev. E
60, 3614 (1999).

31. A. Barbieri and J. S. Langer, Prediction of dendritic growth rates in the linearized solvability theory,Phys.
Rev. A39, 5314 (1989).

32. E. Brener and D. Temkin, Noise-induced sidebranching in the three-dimensional nonaxisymmetric dendritic
growth,Phys. Rev. E51, 351 (1995).

33. A. Dougherty, P. D. Kaplan, and J. P. Gollub, Development of side branching in dendrite crystal growth,Phys.
Rev. Lett. 58, 1652 (1987).

34. Q. Li and C. Beckermann, Scaling behavior of three-dimensional dendrites,Phys. Rev. E57, 3176 (1998).

35. C. Beckermann, H.-J. Diepers, I. Steinbach, A. Karma, and X. Tong, Modeling melt convection in phase-field
simulations of solidification,J. Comput. Phys. 154, 468 (1999).


	1. INTRODUCTION
	2. DENDRITIC GROWTH AND THE PHASE-FIELD METHOD
	3. DIFFUSION MONTE CARLO ALGORITHM
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.

	4. NUMERICAL TESTS
	TABLE I
	FIG. 5.
	FIG. 6.
	FIG. 7.
	TABLE II
	FIG. 8.
	FIG. 9.
	TABLE III

	5. CONCLUSIONS
	APPENDIX: PHASE-FIELD METHOD
	ACKNOWLEDGMENTS
	REFERENCES

